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Measurements are presented of the mean flow in a supersonic turbulent boundary 
layer subjected to a constant weak transverse pressure gradient. The temperature 
and longitudinal velocity and the axial shear stress were only slightly affected by the 
three-dimensionality but a clearly defined crossflow component appeared, in the 
manner suggested by theory and confirmed in earlier experiments. The flow deflection 
angle and transverse-velocity component achieved a self-preserving form so long as 
the transverse-pressure gradient remained constant, and both achieved a maximum 
at the sublayer edge; the deflection angle seemed to decrease again between the latter 
and the surface. An empirical relation was found between the pressure-gradient 
strength and the maximum in the crossflow, and the dependence of the latter on 
distance from the surface was used to test analytical crossflow predictions. The data 
are in general agreement with Van Den Berg’s law of the wall. The data also support 
the so-called parabolic law following a relaxation distance, especially if inviscid 
gradients are accounted for, and if the normal coordinate is contracted by the 
compressibility transformation. 

1. Introduction 
Boundary-layer flows over most surfaces of aerodynamic interest are three- 

dimensional in nature in the sense that, within the layer, the total-velocity vector 
is deflected transversely by an amount dependent on the distance from the surface. 
This deflection can cause the surface friction and heat transfer to depart drastically 
from what would occur for an ordinary two-dimensional boundary layer. Substantial 
progress in calculating three-dimensional effects at low speeds has been made by 
numerical methods (e.g. Fannelop & Krogstad 1975; Rastogi & Rodi 1978), and there 
is good reason to expect that such methods can predict a number of common flow 
configurations (e.g. Vermeulen 197 1 ; East 1973). Similar comparisons with high-speed 
data are scarce, however, mainly because such data have not yet been widely 
available ; in fact the only high-speed three-dimensional boundary-layer data available 
appear to be limited to those from the early experiments of Hall & Dickens (1968) 
and the more recent work of Yanta, Ausherman & Hedlund (1982). 

The present paper provides data which can be used as a testing ground for 
numerical solutions of the three-dimensional Navier-Stokes equations, but it was also 
motivated by the opportunity to examine the extension of some early analytical 
approximations of three-dimensional boundary-layer behaviour to high speeds. 
Examples of such analyses are the ‘parabolic law ’ discussed by Mager (1952), Cooke 
(1958), and Braun (1959), the so-called Johnston (1957) polar relation between the 
crossflow and the longitudinal velocity component, and Van Den Berg’s (1975) more 
recent ‘law of the wall ’ for three-dimensional flows. 
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FIGURE 1. Model used for three-dimensional boundary-layer study; dimensions in cm. 

To preserve generality, self-preservation of the test flow was sought by imposing 
a constant transverse-pressure gradient along the streamline on which the measure- 
ments were made. Because of the confined space in which the data were collected a 
novel sensor, based on the Pitot tube principle, was devised. Details of this and the 
overall experimental arrangement can be found in Demetriades & McCullough (1982), 
and will be described in the next section. 

2. Experimental apparatus 
The measurements were carried out in Montana State University's continuous 

supersonic wind tunnel, which generates a steady, well-calibrated stream of pre-dried 
air. Flow conditions were fixed at Mach number 3.0, stagnation temperature of 31 1 K, 
stagnation pressure of 8 x lo4 N/m2 (600 Torr), and unit Reynolds number of 
55000 cm-'. Under these conditions the boundary layer covering the test-section floor 
was turbulent with a thickness of just under 1 cm. The twisted-wedge model pictured 
on figure 1 was secured on the floor in such a way that it ' scooped up ' this boundary 
layer. Since the model wedge angle 8, varied in the lateral (spanwise) direction z, 
adjacent streamlines arriving at  the model leading edge experienced different 
compression levels as they ascended the wedge. Simple oblique-shock-wave theory 
was used to prescribe the wedge-angle dependence on z, in such a way that the lateral 
pressure gradient ap/az on the model was constant; at  the same time the longitudinal 
gradient ap/ax away irom the shock wave could theoretically be made nil. Slots cut 
along the side of the model, pictured on figure 1, served to minimize the interference 
between the model and the tunnel sidewalls. The model surface pressure produced 
with this arrangement was found to conform quite closely to that calculated from 
oblique-shock-wave theory. The values and significance of the pressure gradients 
generated will be discussed further below. 

The measurement of flow direction in the boundary layer was a most critical 
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FIQURE 2. (a) Yawmeter geometry, with ( b )  calibration algorithm. 

problem in this work. Because of the confined working space and small boundary-layer 
thickness 6 (1  cm) one could not introduce rotating probes (Hall & Dickens 1968) or 
use laterally wide sensors with multiple pitot openings (Spaid, Hurley & Helman 
1975). A 'yawmeter' were therefore designed and built, shown in figure 2, which 
consisted of two 0.015 cm-diameter steel tubes A and B attached side by side, with 
their openings bevelled in opposite directions a t  45'. In principle, Newtonian theory 
can be used to demonstrate that, if the local static pressure p around the probe tip 
is known, the pressures p A  and p ,  measured with tubes A and B can be used to find 
the incident Mach number M and the inclination angle between the flow vector and 
the probe plane of symmetry. Calibrations at M = 0 and 3 showed that this approach 
was valid, provided that a Mach-number-dependent angle N 6.9M was added to 
the 45" bevel as a correction. These calibrations were combined to form a computer 
algorithm, pictured graphically in figure 2, by which the measured p,, p ,  and the 
static pressure p can be used to h d  the local Mach number M and incidence angle 
a at any point in the flow. The measurement error with this technique, which is pre- 
sented in detail in Demetriades & McCullough (1982), does not exceed f 0.5" in a. 
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I n  addition to  the yawmeter a type K bare-bead thermocouple was used to  record 
the local total temperature. This sensor had a diameter d = 0.013 cm and a resolution 
of 0.25 K, and was calibrated in terms of its Reynolds number based on d to give 
the actual local total temperature T,, from the measured T,, as follows: 

with the recovery factor 

f(Re,) = 0.915+0.48 x 10-3(Re,)0.5-0.023 x 10-3Red. 

Finally the surface skin friction was measured with a Preston tube consisting of a 
0.1 cm-diameter pitot tube traversed along the surface. Readings from this probe 
were converted into surface-friction coefficients using the correlation proposed by 
Bradshaw BE Unsworth (1974). It should be noted that this device, as well as the 
bare-bead thermocouple, had been previously used in the same wind tunnel by 
Laderman (1980). In  the present instance of a smooth, adiabatic wall without 
streamwise pressure gradient, and with only a weak transverse gradient, the use of 
the Preston tube is straightforward. The tube was traversed continuously in contact 
with the model surface following the path of the test streamline, the location of which 
will be discussed below. 

The yawmeter and thermocouple were alternately suspended rigidly above the 
model and were traversed in a direction vertical to  the tunnel floor by an automated 
electromechanical system integrated into the data-acquisition equipment. The system 
moves the probe a predetermined distance, pauses to allow equilibration of the sensor 
reading, and then records digitally the voltage sensed by the probe. The computer 
programs for data reduction utilized the algorithm shown on figure 2, performed the 
iterations necessary according to ( 1 )  and produced all local flow properties as a 
function of distance from the model surface. 

3. Pressure gradients and the test streamline 
One of the design objectives of this experiment was to  allow the boundary layer 

togrow in a region of constant transverse pressure gradient (TPG) without longitudinal 
(streamwise) variations in pressure or boundary-layer-edge conditions. This required 
the selection of a ‘test ’ streamline of constant TPG, along which the longitudinal 
gradients were very small or nil. Transverse-pressure gradients without longitudinal 
gradients were ensured t o  a first approximation by the model design, and were 
checked by static-pressure measurements on the surface. Measurements were then 
also made with the yawmeter of the flow incidence just outside the boundary layer; 
a flow direction ‘map’ was next prepared, and a single boundary-layer-edge 
streamline was chosen from it, along which detailed data were to  be taken. 

As expected the flow veered to  the left, as seen on figure 3, in response to  the overall 
pressure differences on the model. The test streamline chosen, shown in this figure, 
is drawn to scale and represents a relatively small turning of the inviscid flow just 
outside the boundary layer; over a distance of about 8 ern the net streamline 
deflection (represented by a, on figure 3) was about 6’. As implied by the figure, data 
were not taken over the first 4 cm of the model, since a weak shock wave emanating 
from the model leading edge and its interaction with the layer complicated the 
interpretation of data in that region. The measured pressure gradients 3pla.z (the 
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TPG) and ap/ax along the streamline are shown on figure 4. The desired goal of 
ap/ax + i?p/az seems to  have been attained. The TPG also appears to be nearly 
constant a t  4-6 torr/cm and considerably larger than the longitudinal gradient i3plax. 
In  non-dimensional terms the averages of the gradients shown can be written as 

or, alternatively, 

where p, v, u, and 6J are the density, kinematic viscosity, velocity, and momentum 
thickness, and subscript e refers to  the boundary-layer edge, and where u, is the 
friction velocity. 

Since the streamline deflection, the model wedge angles and the variations of the 
latter were all small, considerable geometric simplifications were possible in the 
measurement of distances and in the data acquisition and analysis. Thus the distances 
2 and z along and transversely across the wedge surface are approximated as parallel 
to their respective wind-tunnel coordinates (see figure l),  and yN refers to the distance 
from the model surface along the true local vertical. The longitudinal-velocity 
component u and transverse component w (‘crossflow’) are parallel to the local 
surface, and respectively parallel to and perpendicular to the streamline shown on 
figure 3. 

4. The longitudinal velocity, total temperature and shear stress 
Profile measurements were made with the yawmeter and thermocouple probe at 

twelve positions spaced Ax = 0.64 cm apart, along the test Streamline beginning at 
x = 4.4 cm. The longitudinal-velocity component and local-total-temperature data 
are shown on figures 5 and 6; the former is plotted in the usual u+(y+) form of Van 
Driest (1955) and the latter in terms of u/ue we. 

where To, Tw, and Toe are the measured total, wall and stream total temperature 
respectively. Superposed on these figures are the ‘initial’ conditions in the form of 
profiles obtained on the tunnel floor ahead of the model. 

The present initial velocity distribution obtained with the yawmeter, shown on 
figure 5 ,  was found to be almost identical with that obtained earlier at the same 
location of this wind tunnel by Laderman (1978) using a simple pitot tube. As can 
be seen from figure 5, Laderman’s and the present results lie very close to the 
‘classical’ u+ = 5.0 + 2.43 In y+ result in the region y+ > 100, but with a slightly larger 
intercept (6.5 wus. 5 )  and smaller slope (2 215. 2.4) than the classical result. This is not 
a serious discrepancy, especially since the data in the ‘wake’ region usually make 
it difficult to deduce precisely the law-of-the-wall profile slope from the data. The data 
points shown on figure 5 belong to the three-dimensional region of the flow (x > 4 cm, 
figure 3) and here i t  is clear that, although the slope has not substantially changed, 
the profile is displaced upward and the intercept, chosen as 8.1, is visibly higher than 
in the two-dimensional flow ahead of the model. 

On the average, the total-temperature profile in the three-dimensional region, 
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FIGURE 7. Friction coefficient results: A, Laderman (1980); 
solid lines, Hopkins 6 Inouye (1971). 

Quantity Symbol Average Variation 

Streamwise distance 
Boundary -layer thickness 
Momentum thickness 
Static pressure 
Edge velocity 
Mach number 
Momentum Reynolds number 
Maximum deflection angle?$ 
Inviscid wall anglet 
True maximum deflection angle?$ 
Maximum crossflow$ 
True maximum crossflow$ 
Friction coefficient 
Pressure gradient 
Pressure gradient 

- 4.4-1 1.8 
0.88 0.73-0.95 
0.033 0.02M.035 
- 25-27.2 

619 - 

2.81 2.77-2.87 

4.9 4.6-5.2 
1.4 0.8-1.7 
3.5 3 .24 .1  
0.068 0.054-0.073 
0.06 0.05-0.075 
0.00245 - 
0 .OOO 595 - 
0.001 55 - 

2394 - 

Referred to the boundary-layer edge. $ At the sublayer edge. 

TABLE 1. Flow properties along test streamline 

represented by the points on figure 6, changes very little from the form it was found 
to have on the floor ahead of the model. The latter, in turn, is again very similar to 
the data obtained by Laderman (1978) a t  the same position ahead of the model. It 
is also evident from figure 6 that there is a considerable difference between the simple 
linear ('Crocco') relation and the present H-u/u, data. This type of difference, earlier 
attributed to nozzle-wall non-equilibrium effects (Bertram & Neal 1965), has now 
been convincingly attributed by Laderman (1978) to the neglect of the viscous 
stresses in the Crocco model through the assumption of unity Prandtl number. Data 
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FIGURE 8. Flow deflection angle in the boundary layer. 

of Laderman support the ‘ quadratic ’ H(u/u,)  relation of Walz (1962) and the recent 
theory of Whitfield & High (1977), which includes shear-stress modelling, non-unity 
Prandtl number and heat transfer, and which indicates that the ‘linear’ Crocco 
relation obtains only for cooled walls. 

Sufficient resolution was available in the present measurements to discern the 
viscous sublayer, which appears systematically in the aggregate of data shown in the 
insert of figure 5.  Closer to the wall, a region appears where the data give a finite 
velocity; this region, amounting to one half the sublayer thickness, is almost equal 
in height to the yawmeter-probe diameter and is therefore identified with a probe-wall 
interference anomaly. Outside this region the velocity rate of change conforms 
numerically with expectations from the shear measurements illustrated on figure 7 .  
The friction coefficients along the test streamline are about 20 % higher than found 
for the corresponding two-dimensional layer (Laderman 1978), but, since the Preston 
tube had also been aligned with the test streamline, it is safe to state that the friction 
component in the 2-direction did not change much from that encountered in 
two-dimensional flows. These friction coefficients are included in table 1 which 
presents the average of properties measured along the streamline and their variations. 

5. The crossflow component 
The flow incidence angle aN and crossflow-velocity component w are defined 

relative to their values at the boundary-layer edge yN = 6, so that aN(yN = 6) = 0 
and w(yN = 8) = 0. This definition is essential because of the inviscid streamline 
deflection found between the wall leading-edge shock wave and the boundary-layer 
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FIGURE 9. Crossflow-velocity component in the boundary layer. 

edge. This deflection is caused by the wedge-model twist and is visible on figures 8 
and 9, in which aN and w/u, are plotted vs the non-dimensional distance yN/6. The 
progressive increase of aN and w toward the wall, shown in these figures, bears the 
expected resemblance with the supersonic-flow data of Hall & Dickens (1968) and 
with expectations from low-speed experiments (e.g. East 1973 ; Vermeulen 1971). 
Equally expected is the decrease of w toward zero within the sublayer, but not 
necessarily the similar decrease of aN shown on figure 8, for which no adequate 
explanation is readily available. The maximum w and aN values at the sublayer edge 
are included in table 1. 

Early investigations of turbulent three-dimensional boundary layers such as done 
by Mager (1952), Cooke (1958), and Braun (1959) concluded that the crossflow 
component obeys a so-called parabolic variation of the form 

2 W 

U 
- = (1 -?) tana,, 

where a, is the flow deflection ‘at the wall ’. In  their experiments at supersonic speeds, 
Hall & Dickens (1969) concluded that the parabolic law does not hold. Attempts to 
fit the present data to this law were initially impeded by the fact that the deflection 
angle aN was, as previously noted, found to peak at the sublayer edge; useful results 
were obtained, however, when this maximum deflection angle at the sublayer edge 
was used in lieu of the ‘wall’ angle a,, and these are shown on figure 10. The data 
on figure lO(a), which plots w/u tana, us. (1 - ~ ~ / 6 ) ~ ,  should fall on a straight line 
joining the points (0 ,O)  and (1, 1 )  if (5) is valid. Although a semblance to a straight 
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WT/U tan (a, -a& 

line appears toward the larger x, this line has an intercept and slope not agreeing 
with (5). 

It is observed on figures 8 and 9 that aN and w are finite and linearly variable 
outside the boundary layer, owing of course to the presence of the TPG in the inviscid 
flow outside the latter. One Can thus hypothesize that even in the absence of the 
boundary layer there would be an ‘inviscid’ flow deflection ai near the wall, such as 
shown for example by the dashed line on figure 8, which has the form 

ai = a,,(l-?), 

where a,, can be termed the ‘inviscid wall angle’ to signify the deflection at the wall 
in the absence of the boundary layer (the values of a. so found are given on table 1). 

14 BLM 156 
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FIQURE 1 1 .  Test of the parabolic law using the transformed distance: 
(a) measured crossflow; ( b )  true crossflow. 

The true deflection of the flow a t  the wall, including the effect of the boundary layer, 
therefore is a,-a,. The comparison discussed in the last paragraph can then be 
improved by computing the 'true ' deflection angle aT = aN - ui from the data, and 
the true crossflow wT from aT and the measured total velocity. These results can then 
be compared again with (5 )  modified to include the effect of the inviscid deflection: 

WT 
u tan (a, - a,) (7) 

Theoretically the quantities A- and B have values 1 and 0 respectively, but the 
comparison with the data on figure lO(6) shows that A = 1.28 and B = -0.14 in 
0.15 < (1 -yN/S)' < 0.8 (or 0.1 < yN/8 < 0.6), serving to indicate that the flow 
deflection due to the boundary layer alone is confined below a yN of about 0.68. 
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Since (5) was originally formulated for incompressible flows (Mager 1952) i t  is also 
appropriate to examine the compressibility effect by replacing yN by 

and comparing it with the data points transformed in the same manner. Figure 11 (a )  
shows that, toward the end of the range examined, the data are in agreement with 
such a ‘transformed’ parabolic law. One can go a step further and propose a general 
modification of the parabolic behaviour (5) which accounts both for the effect of the 
transformed coordinate yN as above, and also for the inviscid deflection in a manner 
analogous to (7) : 

WT 
u tan (a, - ao) (9) 

with a = 1 and 8 = 0. According to figure 11 (b), this final modification gives the best 
correlation of the data with the parabolic behaviour but with 2 = 1.5 and B = 0.45 
(solid line on figure 11 b) which again signify that the true deflection due to the 
boundary-layer effect is limited to aN < 0.456. 

The data were also used to test the validity of the observation by Johnston (1957) 
that a polar plot of the crossflow us. the longitudinal-velocity component yields a 
simple linear relationship : 

where C,  = const. The quantities w/u, and wT/ue, respectively, are plotted on 
figures 12 (a) and 12 (b) vs. u/u,. There is a semblance of straight-line behaviour of the 
data only near the forward portion (z = 5.1 cm) of the test streamline, but thereafter 
the points deviate from the straight line, showing that the ‘Johnston triangle’ 
cannot predict the flow behaviour for this configuration. 

The present data can also be used to test the law of the wall for the crossflow 
proposed by Van Den Berg (1975)’ in which the non-dimensional TPG appears 
explicitly. When longitudinal-pressure gradients are absent Van Den Berg obtained 
a series solution for the crossflow and deflection angle of which the principal terms 
for small a; y+(a; y+ 4 1 )  are- 

a;(Y+ + b )  
r$ =aw-aN = + 

y + A ’  

where y+ is the usual yN u,/v,, b is an empirical constant to be found from the data, 
and where k and A are associated with the usual simple law of the wall: 

u 1  
u+ = - = - (lny++A). 

u7 k 
The quantities w, and a, signify the finite (maximum) crossflow and turning angle 
at the ‘wall’ which in this case correspond to the maximum found at the sublayer 
edge. 

Figure 13 and 14 summarize the comparison between the present data and Van 
Den Berg’s ‘law of the wall’. To best illustrate the results, the crossflow component 

14-2 
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and deflection angle have been plotted on figure 13 (using w, and a, as measured on 
the sublayer edge) as 

w,-w us. y+, (14) 

(15) 

so that if (1 1) is valid the former plot should have a slope of 1 /k, while the latter 
plot should have a slope of unity according to (12). The quantities l /k  and A were 
obtained from what appeared to be the best fit for the law-of-the-wall curve on 
figure 5,  i.e. from u+ = 8.1 +2.04 In y+, so that l / k  = 2.04. 

It is seen from figure 13 that the linearity predicted by (11) and (12) holds up to 
a value of y+ of order 300, for which the ‘small’ parameter aiy+ is about 0.5. On 
figure 13 (b ) ,  the slope of unity predicted by (12) is attained by z = 11.4 cm, while in 

u7 4 
a ~ - , a ~  (In y + + ~ )  vs. y+, 

a* 
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figure 13(a) the data are contained within slopes ranging from the predicted 2.04, to 
1.54. The constant b is found to have at most a value of -40. 
To complete the description of the crossflow one must relate the key parameters 

appearing in the parabolic law and in Van Den Berg's formulas, with the TPG 
magnitude. Such an approximate empirical relation can be found, for example, by 
correlating small observed variations in the maximum crossflow w, (at the sublayer 
edge) with similar systematic variations in m, (see (3)): 

~- ww 2 ue (:)-I II 114, 

where 8 is the local momentum thickness, and where it is assumed that 
w,(ap/az = 0) = 0. Alternatively, Van Den Berg observed a maximum flow deflection 
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FIGURE 14. Test of the Van Den Berg predictions: (a) the true 
crossflow, (b )  the true deflection angle. 

a, (or aw-ao in the present notation) of about 10' for a TPG with a value 
a; = 5 x Combining this finding with the present data and the fact that 
a,(.; = 0) = O gives 

a,-ao N 2300~:. 

6. Concluding discussion 
The objective of this work has been to test the early analytic approaches to the 

three-dimensional boundary layer, of which the parabolic variation had been a prime 
example. The supersonic data of Hall & Dickens (1968) showed little resemblance to 
such a parabolic variation, but in the present instance this variation is confirmed on 
figure 11 (0) if one accounts for (a) the inviscid turning of the streamlines, (b) the 
compressibility transformation of the normal coordinate y+ and (c) some relaxation 
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adjustment in the streamwise direction. A major factor for this ‘reinstatement’ of 
the parabolic profile, which could explain the difference with the Hall-Dickens data, 
is that in the present experiment the TPG remained nearly constant. Apparently some 
finite distance is required, under constant boundary conditions, for the turbulent flow 
to adjust to the parabolic law. However, the relaxation distance may also be 
characteristic of the low momentum Reynolds number (about 2500, table 1) of this 
experiment. This distance was of order 108, beginning from the leading edge of the 
model. 

Van Den Berg’s formulation gives a linear variation of the crossflow and deflection 
angle defined, according to (11) and (12), relative to their values on the wall. This 
formulation is actually a simple one, based on the inclusion of the inertial forces on 
the shear-stress variation, the assumption that the usual mixing-length relation holds 
and that the shear-stress direction coincides with the direction of deformation, and 
the neglect of diffusion. The results of figure 13 indicate that this approach has a 
certain validity, but still leaves room for relaxation effects as mentioned above. 

It is difficult to rationalize, at this point, the observation that the turning angle 
decreases between the sublayer edge and the wall. The data shown on figures 8 and 
9 make it hard to believe that this observation can be dismissed on the basis of 
probe-wall interference alone, and there is no sublayer data available at low speeds 
for comparison. If true, this phenomenon would imply that the streamline direction 
on the wall is close to the streamline direction at the boundary-layer edge, and would 
complicate profoundly the shear-stress distribution in the sublayer. 

In summary, the results of these measurements indicate that : 
(1) A constant transverse pressure gradient with non-dimensional magnitude of 

about 1.5 x was found to increase the intercept and to decrease the slope of the 
‘law of the wall’ in a turbulent supersonic boundary layer. The same gradient also 
increased the friction coefficient by about 20% over the corresponding value for a 
two-dimensional boundary layer. 

(2) The crossflow component and flow-deflection angle attained a self-similar form 
over a streamline length of about 10 layer thicknesses, and both increased toward 
the surface as observed during earlier experiments. The deflection angle, however, 
was observed to decrease again in the viscous sublayer. The maximum crossflow and 
deflection angle in the layer were empirically connected to the transverse-pressure- 
gradient magnitude. 

(3) Comparison between the data and.the so-called parabolic law for the crossflow 
component showed that agreement between the two exists past a streamwise 
relaxation distance, provided that one accounts for the inviscid flow deflection and 
that the distance from the wall is contracted by the compressibility transformation. 
Accounting for the inviscid flow deflection reveals that the turning of the flow due 
to the boundary layer alone, is again limited to the bottom half of the layer as at 
low speeds. 
(4) The data also compare well with Van Den Berg’s extended ‘law of the wall’, 

which is typical of analytic approximations of incompressible three-dimensional 
boundary-layer behaviour. This comparison is favourable for values of the y+ 
coordinate up to 300. 
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